Mathematical Moments From The American Mathematical Society

  • Autor: Vários
  • Narrador: Vários
  • Editora: Podcast
  • Duração: 15:34:13
  • Mais informações

Informações:

Sinopse

The American Mathematical Societys Mathematical Moments program promotes appreciation and understanding of the role mathematics plays in science, nature, technology, and human culture. Listen to researchers talk about how they use math: from presenting realistic animation to beating cancer.

Episódios

  • Finding Friends: Part 1

    01/10/2012 Duração: 03min

    Facebook has over 700 million users with almost 70 billion connections. The hard part isn.t people making friends; rather it.s Facebook.s computers storing and accessing relevant data, including information about friends of friends. The latter is important for recommendations to users (People You May Know). Much of this work involves computer science, but mathematics also plays a significant role. Subjects such as linear programming and graph theory help cut in half the time needed to determine a person.s friends of friends and reduce network traffic on Facebook.s machines by about two-thirds. What.s not to like? The probability of people being friends tends to decrease as the distance between them increases. This makes sense in the physical world, but it.s true in the digital world as well. Yet, despite this, the enormous network of Facebook users is an example of a small-world network. The average distance between Facebook users the number of friend-links to connect people is less than five. And even though

  • Catching and Releasing: Part 2

    01/10/2012 Duração: 03min

    There.s more mathematics involved in juggling than just trying to make sure that the number of balls (or chainsaws) that hits the ground stays at zero. Subjects such as combinatorics and abstract algebra help jugglers answer important questions, such as whether a particular juggling pattern can actually be juggled. For example, can balls be juggled so that the time period that each ball stays aloft alternates between five counts and one? The answer is Yes. Math also tells you that the number of balls needed for such a juggling pattern is the average of the counts, in this case three. Once a pattern is shown to be juggleable and the number of balls needed is known, equations of motion determine the speed with which each ball must be thrown and the maximum height it will attain. Obviously the harder a juggler throws, the faster and higher an object will go. Unfortunately hang time increases proportionally to the square root of the height, so the difficulty of keeping many objects in the air increases very quic

  • Catching and Releasing: Part 1

    01/10/2012 Duração: 03min

    There.s more mathematics involved in juggling than just trying to make sure that the number of balls (or chainsaws) that hits the ground stays at zero. Subjects such as combinatorics and abstract algebra help jugglers answer important questions, such as whether a particular juggling pattern can actually be juggled. For example, can balls be juggled so that the time period that each ball stays aloft alternates between five counts and one? The answer is Yes. Math also tells you that the number of balls needed for such a juggling pattern is the average of the counts, in this case three. Once a pattern is shown to be juggleable and the number of balls needed is known, equations of motion determine the speed with which each ball must be thrown and the maximum height it will attain. Obviously the harder a juggler throws, the faster and higher an object will go. Unfortunately hang time increases proportionally to the square root of the height, so the difficulty of keeping many objects in the air increases very quic

  • Putting the auto in automobile

    22/08/2012 Duração: 04min

    It may be hard to accept but it.s likely that we.d all be much safer in autonomous vehicles driven by computers, not humans. Annually more than 30,000 Americans die in car crashes, almost all due to human error. Autonomous vehicles will communicate position and speed to each other and avoid potential collisions-without the possibility of dozing off or road rage. There are still many legal (and insurance) issues to resolve, but researchers who are revving up the development of autonomous vehicles are relying on geometry for recognizing and tracking objects, probability to assess risk, and logic to prove that systems will perform as required. The advent of autonomous vehicles will bring in new systems to manage traffic as well, for example, at automated intersections. Cars will communicate to intersection-managing computers and secure reservations to pass through. In a matter of milliseconds, the computers will use trigonometry and differential equations to simulate vehicles. paths through the intersection and

  • Forecasting Crime Part 2

    21/08/2012 Duração: 04min

    No one can predict who will commit a crime but in some cities math is helping detect areas where crimes have the greatest chance of occurring. Police then increase patrols in these "hot spots" in order to prevent crime. This innovative practice, called predictive policing, is based on large amounts of data collected from previous crimes, but it involves more than just maps and push pins. Predictive policing identifies hot spots by using algorithms similar to those used to predict aftershocks after major earthquakes. Just as aftershocks are more likely near a recent earthquake.s epicenter, so too are crimes, as criminals do indeed return to, or very close to, the scene of a crime. Cities employing this approach have seen crime rates drop and studies are underway to measure predictive policing.s part in that drop. One fact that has been determined concerns the nature of hot spots. Researchers using partial differential equations and bifurcation theory have discovered two types of hot spots, which respond quite

  • Forecasting Crime Part 1

    21/08/2012 Duração: 04min

    No one can predict who will commit a crime but in some cities math is helping detect areas where crimes have the greatest chance of occurring. Police then increase patrols in these "hot spots" in order to prevent crime. This innovative practice, called predictive policing, is based on large amounts of data collected from previous crimes, but it involves more than just maps and push pins. Predictive policing identifies hot spots by using algorithms similar to those used to predict aftershocks after major earthquakes. Just as aftershocks are more likely near a recent earthquake.s epicenter, so too are crimes, as criminals do indeed return to, or very close to, the scene of a crime. Cities employing this approach have seen crime rates drop and studies are underway to measure predictive policing.s part in that drop. One fact that has been determined concerns the nature of hot spots. Researchers using partial differential equations and bifurcation theory have discovered two types of hot spots, which respond quite

  • Being on the Cutting Edge

    15/06/2012 Duração: 04min

    Cutters of diamonds and other gemstones have a high-pressure job with conflicting demands: Flaws must be removed from rough stones to maximize brilliance but done so in a way that yields the greatest weight possible. Because diamonds are often cut to a standard shape, cutting them is far less complex than cutting other gemstones, such as rubies or sapphires, which can have hundreds of different shapes. By coupling geometry and multivariable calculus with optimization techniques, mathematicians have been able to devise algorithms that automatically generate precise cutting plans that maximize brilliance and yield. The goal is to find the final shape within a rough stone. There are an endless number of candidates, positions, and orientations, so finding the shape amounts to a maximization problem with a large number of variables subject to an infinite number of constraints, a technique called semi-infinite optimization. Experienced human cutters create finished gems that average about 1/3 of the weight of the

  • Getting a Handle on Obesity

    15/06/2012 Duração: 04min

    Once a problem only in the developed world, obesity is now a worldwide epidemic. The overwhelming cause of the epidemic is a dramatic increase in the food supply and in food consumption not a surprise. Yet there are still many mysteries about weight change that can.t be answered either inside the lab, because of the impracticality of keeping people isolated for long periods of time, or outside, because of the unreliability of dietary diaries. Mathematical models based on differential equations can help overcome this roadblock and allow detailed analysis of the relationship between food intake, metabolism, and weight change. The models. predictions fit existing data and explain such things as why it is hard to keep weight off and why obese people are more susceptible to further weight gain. Researchers are also investigating why dieters often plateau after a few months and slowly regain weight. A possible explanation is that metabolism slows to match the drop in food consumed, but models representing food int

  • Keeping Things in Focus - Part 2

    05/10/2011 Duração: 04min

    Some of the simplest and most well-known curves parabolas and ellipses, which can be traced back to ancient Greece are also among the most useful. Parabolas have a reflective property that is employed in many of today.s solar power technologies. Mirrors with a parabolic shape reflect all entering light to a single point called the focus, where the solar power is converted into usable energy. Ellipses, which have two foci, have a similar reflecting property that is exploited in a medical procedure called lithotripsy. Patients with kidney stones and gallstones are positioned in a tank shaped like half an ellipse so that the stones are at one focus. Acoustic waves sent from the other focus concentrate all their energy on the stones, pulverizing them without surgery. Math can sometimes throw you a curve, but that.s not necessarily a bad thing. Parabolas and ellipses are curves called conic sections. Another curve in this category is the hyperbola, which may have the most profound application of all the nature o

  • Keeping Things in Focus - Part 1

    05/10/2011 Duração: 04min

    Some of the simplest and most well-known curves parabolas and ellipses, which can be traced back to ancient Greece are also among the most useful. Parabolas have a reflective property that is employed in many of today.s solar power technologies. Mirrors with a parabolic shape reflect all entering light to a single point called the focus, where the solar power is converted into usable energy. Ellipses, which have two foci, have a similar reflecting property that is exploited in a medical procedure called lithotripsy. Patients with kidney stones and gallstones are positioned in a tank shaped like half an ellipse so that the stones are at one focus. Acoustic waves sent from the other focus concentrate all their energy on the stones, pulverizing them without surgery. Math can sometimes throw you a curve, but that.s not necessarily a bad thing. Parabolas and ellipses are curves called conic sections. Another curve in this category is the hyperbola, which may have the most profound application of all the nature o

  • Harnessing Wind Power - Part 2

    05/10/2011 Duração: 04min

    Mathematics contributes in many ways to the process of converting wind power into usable energy. Large-scale weather models are used to find suitable locations for wind farms, while more narrowly focused models incorporating interactions arising from factors such as wake effects and turbulence specify how to situate individual turbines within a farm. In addition, computational fluid dynamics describes air flow and drag around turbines. This helps determine the optimal shapes for the blades, both structurally and aerodynamically, to extract as much energy as possible, and keep noise levels and costs down. Mathematics also helps answer two fundamental questions about wind turbines. First, why three blades? Turbines with fewer blades extract less energy and are noisier (because the blades must turn faster). Those with more than three blades would capture more energy but only about three percent more, which doesn.t justify the increased cost. Second, what percentage of wind energy can a turbine extract? Calculus

  • Harnessing Wind Power - Part 1

    05/10/2011 Duração: 04min

    Mathematics contributes in many ways to the process of converting wind power into usable energy. Large-scale weather models are used to find suitable locations for wind farms, while more narrowly focused models incorporating interactions arising from factors such as wake effects and turbulence specify how to situate individual turbines within a farm. In addition, computational fluid dynamics describes air flow and drag around turbines. This helps determine the optimal shapes for the blades, both structurally and aerodynamically, to extract as much energy as possible, and keep noise levels and costs down. Mathematics also helps answer two fundamental questions about wind turbines. First, why three blades? Turbines with fewer blades extract less energy and are noisier (because the blades must turn faster). Those with more than three blades would capture more energy but only about three percent more, which doesn.t justify the increased cost. Second, what percentage of wind energy can a turbine extract? Calculus

  • Keeping the beat - Part 2

    05/10/2011 Duração: 04min

    The heart.s function of pumping blood may seem fairly simple but the underlying mechanisms and electrical impulses that maintain a healthy rhythm are extremely complex. Many areas of mathematics, including differential equations, dynamical systems, and topology help model the electrical behavior of cardiac cells, the connections between those cells and the heart.s overall geometry. Researchers aim to gain a better understanding of the normal operation of the heart, as well as learn how to diagnose the onset of abnormalities and correct them. Of the many things that can go wrong with a heart.s rhythm, some measure of unpredictability is (surprisingly) not one of them. A healthy heartbeat is actually quite chaotic not regular at all. Furthermore, beat patterns become less chaotic as people age and heart function diminishes. In fact, one researcher recommends that patients presented with a new medication should ask their doctors, "What is this drug going to do to my fractal dimensionality?" For More Informatio

  • Keeping the beat - Part 1

    05/10/2011 Duração: 04min

    The heart.s function of pumping blood may seem fairly simple but the underlying mechanisms and electrical impulses that maintain a healthy rhythm are extremely complex. Many areas of mathematics, including differential equations, dynamical systems, and topology help model the electrical behavior of cardiac cells, the connections between those cells and the heart.s overall geometry. Researchers aim to gain a better understanding of the normal operation of the heart, as well as learn how to diagnose the onset of abnormalities and correct them. Of the many things that can go wrong with a heart.s rhythm, some measure of unpredictability is (surprisingly) not one of them. A healthy heartbeat is actually quite chaotic not regular at all. Furthermore, beat patterns become less chaotic as people age and heart function diminishes. In fact, one researcher recommends that patients presented with a new medication should ask their doctors, "What is this drug going to do to my fractal dimensionality?" For More Informatio

  • Sustaining the Supply Chain - Part 2

    12/07/2011 Duração: 04min

    It.s often a challenge to get from Point A to Point B in normal circumstances, but after a disaster it can be almost impossible to transport food, water, and clothing from the usual supply points to the people in desperate need. A new mathematical model employs probability and nonlinear programming to design supply chains that have the best chance of functioning after a disaster. For each region or country, the model generates a robust chain of supply and delivery points that can respond to the combination of disruptions in the network and increased needs of the population. Math also helps medical agencies operate more efficiently during emergencies, such as an infectious outbreak. Fluid dynamics and combinatorial optimization are applied to facility layout and epidemiological models to allocate resources and improve operations while minimizing total infection within dispensing facilities. This helps ensure fast, effective administering of vaccines and other medicines. Furthermore, solution times are fast en

  • Sustaining the Supply Chain - Part 1

    12/07/2011 Duração: 05min

    It.s often a challenge to get from Point A to Point B in normal circumstances, but after a disaster it can be almost impossible to transport food, water, and clothing from the usual supply points to the people in desperate need. A new mathematical model employs probability and nonlinear programming to design supply chains that have the best chance of functioning after a disaster. For each region or country, the model generates a robust chain of supply and delivery points that can respond to the combination of disruptions in the network and increased needs of the population. Math also helps medical agencies operate more efficiently during emergencies, such as an infectious outbreak. Fluid dynamics and combinatorial optimization are applied to facility layout and epidemiological models to allocate resources and improve operations while minimizing total infection within dispensing facilities. This helps ensure fast, effective administering of vaccines and other medicines. Furthermore, solution times are fast en

  • Answering the Question, and Vice Versa

    12/07/2011 Duração: 07min

    Experts are adept at answering questions in their fields, but even the most knowledgeable authority can.t be expected to keep up with all the data generated today. Computers can handle data, but until now, they were inept at understanding questions posed in conversational language. Watson, the IBM computer that won the Jeopardy! Challenge, is an example of a computer that can answer questions using informal, nuanced, even pun-filled, phrases. Graph theory, formal logic, and statistics help create the algorithms used for answering questions in a timely manner.not at all elementary. Watson.s creators are working to create technology that can do much more than win a TV game show. Programmers are aiming for systems that will soon respond quickly with expert answers to real-world problems.from the fairly straightforward, such as providing technical support, to the more complex, such as responding to queries from doctors in search of the correct medical diagnosis. Most of the research involves computer science, bu

  • Sounding the Alarm - Part 2

    16/06/2011 Duração: 08min

    Nothing can prevent a tsunami from happening they are enormously powerful events of nature. But in many cases networks of seismic detectors, sea-level monitors and deep ocean buoys can allow authorities to provide adequate warning to those at risk. Mathematical models constructed from partial differential equations use the generated data to determine estimates of the speed and magnitude of a tsunami and its arrival time on coastlines. These models may predict whether a trough or a crest will be the first to arrive on shore. In only about half the cases (not all) does the trough arrive first, making the water level recede dramatically before the onslaught of the crest. Mathematics also helps in the placement of detectors and monitors. Researchers use geometry and population data to find the best locations for the sensors that will alert the maximum number of people. Once equipment is in place, warning centers collect and process data from many seismic stations to determine if an earthquake is the type that wi

  • Sounding the Alarm - Part 1

    16/06/2011 Duração: 08min

    Nothing can prevent a tsunami from happening they are enormously powerful events of nature. But in many cases networks of seismic detectors, sea-level monitors and deep ocean buoys can allow authorities to provide adequate warning to those at risk. Mathematical models constructed from partial differential equations use the generated data to determine estimates of the speed and magnitude of a tsunami and its arrival time on coastlines. These models may predict whether a trough or a crest will be the first to arrive on shore. In only about half the cases (not all) does the trough arrive first, making the water level recede dramatically before the onslaught of the crest. Mathematics also helps in the placement of detectors and monitors. Researchers use geometry and population data to find the best locations for the sensors that will alert the maximum number of people. Once equipment is in place, warning centers collect and process data from many seismic stations to determine if an earthquake is the type that wi

  • Putting Another Cork in It - Part 2

    21/04/2011 Duração: 05min

    A triple cork is a spinning jump in which the snowboarder is parallel to the ground three times while in the air. Such a jump had never been performed in a competition before 2011, which prompted ESPN.s Sport Science program to ask math professor Tim Chartier if it could be done under certain conditions. Originally doubtful, he and a recent math major graduate used differential equations, vector analysis, and calculus to discover that yes, a triple cork was indeed possible. A few days later, boarder Torstein Horgmo landed a successful triple cork at the X-Games (which presumably are named for everyone.s favorite variable). Snowboarding is not the only sport in which modern athletes and coaches seek answers from mathematics. Swimming and bobsledding research involves computational fluid dynamics to analyze fluid flow so as to decrease drag. Soccer and basketball analysts employ graph and network theory to chart passes and quantify team performance. And coaches in the NFL apply statistics and game theory to foc

página 5 de 7